Taking a Data-Driven Approach to IT Transformation
A Management Overview

Introducing MIKE2.0
An Open Source Methodology for Information Development
http://www.openmethodology.org
Building an Enterprise Data Management Strategy

Agenda

- The Case for a Data-Driven Approach to IT Transformation
 - IT Transformation: What are the Real Issues?
 - Re-Balancing the Enterprise to focus on Information Development
 - Business Drivers for the Data-Driven Approach
- Extreme Blueprinting and Roadmapping (XBR)
 - Guiding Principles for IT Transformation
 - Aligning your programmes against a Complete Enterprise View
 - Architecture Framework for IT Transformation
- The MIKE2.0 Methodology: The Information Development Work Stream
 - Overview
 - MIKE2.0 Strategy: Building the Blueprint and Roadmap
 - Example Task: Showing the Benefits of Information Management
 - Example Task: Determining Strategic Technology Requirements
 - Example Task: Overall Programme Planning
- Key to Success and Lessons Learned
Data Driven IT Transformation is a Composite Solution Offering that brings together offerings across the suite. It introduced advanced concepts in Information Management.
IT Transformation
What are the Real Issues?

The "IT Transformation" of an organisation from its legacy environment to the next generation of technology is one of the most complex and expensive changes an organisation can undergo.

Most organisations focus primarily on functional capabilities and business process when designing their Transformation strategy. We believe these programmes are starting in the wrong place; they aren't dealing with the Real Problems:

- How to improve and optimise business processes
- How to manage information across the enterprise
- How to safely migrate from the legacy to the contemporary environment
- How to deliver on a transition strategy that provides incremental functionality while mitigating risk and staying within budget
- How to define an improvement strategy for your people, processes, and organisation as well as the technology

Of all these factors, how information is managed is often the biggest limiter to success. We call our comprehensive approach is that area Information Development.
Re-Balancing the Enterprise
Data is the Driving Force Behind Today's Architectures

Period of Initial Use

IT

The last half of the 20th Century

In many respects 'technology' was not there, thus

'Stove Pipe' Development King

Period of Preparation

Formalize Information Development

2002 – 2005

Period of Transition

Shake out the Winners

2006-2010

Period of Execution

2010 ++++

IT

This Time for Real?

The 21st Century

Flexibility in Accessing and Using Information will be King

For the most part, the promise of federated systems have not lived up to the promise of easy use and demand-lead capabilities. Function and data are still tied up in vertical silos. Change is costly and reuse of function is minimal.

Removing cost from the business while providing flexible access to integrated information about customers and products is still the goal.

To achieve this a more formal and yet flexible approach to Information Development is needed than what is being done today.

© 2008 BearingPoint, Inc.
Re-Balancing the Enterprise
Data is the Driving Force Behind Today's Architectures

IT
The last half of the 20th Century
- Custom Development and Private Data
- Packaged Systems and Proprietary Data
- Multiple 'points of truth' for customer and product data
- All companies at the same level of flexibility and maturity with respect to Information Development
- Data Access and Management a major cost factor in the business
- Uncoordinated Webifying
- Installing a new application is not the problem it's converting the data to the new application

Have focus and staying power to achieve useful preparation while addressing short term business value.

Information Development is the key enabler & limiter to success.

IT
The 21st Century
- Functionality via multiple channels
- Re-usable Services via these same multiple channels
- Managed Services for unique or complex capabilities
- Internet Architecture everywhere
- Increased volatility in application choices and advancements across all channels
- Integrated Web Services (increase on self-service)
- Enhanced collaboration among business partners

Flexibility in Accessing and Using Information is King

© 2008 BearingPoint, Inc.
To solve the Transformation Challenge use a "Balanced View" Model of the Enterprise

- You must have a comprehensive solution covering each of the 15 component areas below
- To meet emerging requirements we believe you must take an Information Development approach
- Taking an Information Development approach means that we re-balance the work we do to focus on information as much as we focus on function, processes and infrastructure
- Information Development then becomes the driving force for a successful transformation programme
- You must align each of these areas explicitly in your programme approach
Business Drivers for taking a Data-Driven Approach
Address the Data Quality Issues that put you at Risk

Data Quality is and has been a primary problem in project failures – and the issue isn't going away

- According to the Standish Group, in 1998, 74 percent of all data migration projects either overran or failed, resulting in almost $100 billion in unexpected costs.

- In a survey of 300 IT executives conducted by Information Week, the majority of the respondents (81 percent) said, "improving (data) quality was their most important post-year 2000 technology priority".

- Data Quality issues lead to 87% of projects requiring extra time to reconcile data – TDWI Data Quality Survey, December, 2001.

- Data Quality issues lead to lost credibility within a system in 81% of cases – TDWI Data Quality Survey, December, 2001.

- A TDWI study shows that poor data quality costs U.S. businesses an estimated $600 billion a year. TDWI Data Quality Survey, February, 2002.

- According recent studies (2005) to the Gartner and Meta Groups, 55-70% of CRM and 70% of Data Warehouse project failures are due to data quality issues.

- Through 2005, more than 50% of CRM deployments will suffer limited acceptance, if not outright failure, because of the lack of attention to data quality issues., Gartner, 2005.

- In a recent report, Gartner predicted 50% of data warehouse projects through 2007 will have limited acceptance or be outright failures, as a result of lack of attention to data quality issues.

As per the new UK Data Protection Act, "information must be accurate, up-to-date and held for no longer than necessary". Under this new law, companies have to comply with rules for manual and electronic processing of personal data, such as name, addresses and dates of births.
Business Drivers for taking a Data-Driven Approach

Taking a Driven-Driven Approach Provides Major Benefits

Achieve
- Assurance that common data reconciles across all systems
- Improved data quality across the enterprise environment
- Reduced complexity in the information management environment through data standards
- The ability to trace the flow of information across all systems in the architecture
- Can scale to meet future business volume growth
- Meets the needs of any initiating project and can also be extended across the wider enterprise environment

Avoid
- Ingrained information processes that lead to data quality issues
- Unnecessary duplication of effort related to integrated and information management
- Inconsistent information management processes that lead to data reconciliation issues
- Inefficient software development process that increases cost and slows delivery
- Unknown handoffs between projects sharing common information
- Inflexible systems and lock-in to specific technologies
- Unnecessary duplication of technology spend

Strategy for Data-Driven Transformation

Change Drivers
- Market, Serve & Know the Customer Better
- Improve Competitive Position
- Reduce Technical Complexity & Cost
- Meet Regulatory Requirements

© 2008 BearingPoint, Inc.
Business Drivers for taking a Data-Driven Approach
10 Guiding Principles to a Successful Transformation

1. **Take a Data-Driven Approach to IT Transformation.** In organisations undergoing significant technology change, the problem isn't whether the new applications can provide the required functionality, it's often the data.

2. **Keep the vision at the "Vision Level" – establish the Blueprint and never start from scratch – use best practice frameworks.** Keep things at a strategic level while still following a diligent approach to requirements.

3. **Involve both IT and the Business to establish the initial vision.** Work collaboratively and iteratively and define an approach for continuous implementation and continuous communications throughout the programme.

4. **The Technology Backplane is Key.** The information management and infrastructure capabilities needed to migrate from legacy environments and move to future state implementations should be brought "out front" on every project.

5. **Investigate & Fix DQ Problems Early.** More times than not data issue identified late in testing have caused project delays through an 11th hour "fire fight". Start with data profiling to identify high risk areas in the early stages of the project.

6. **Align Data-Focused Projects into an Overall Programme.** Migration capabilities are not primarily about the design of data in databases or focused on the movement of data in OLTP transactions – it also involved data for analytical purposes – align these programmes.

7. **Use Standards to Reduce Complexity.** One of the most important things than can be done is to develop a set of open and common standards related to data, integration and infrastructure.

8. **Build a Metadata-Driven Solution.** Metadata is pervasive across through data migration environment and is the key to reducing complexity and promoting reusability across infrastructure. Vendor solutions in this space are now finally coming together as applications, information management and integration tools now become "metadata aware".

9. **Move to a Organisational Model focused on Information Development** Build an Information Management Organisation that is structured in the most efficient manner to deliver solutions for the business.

10. **Use a detailed, method-based approach.** We use the MIKE2.0 Methodology, BearingPoint's open source approach for Information Development.
Business Drivers for taking a Data-Driven Approach

Guiding Principles to a Successful Transformation

Principle #4. The Technology Backplane is Key – Common Capabilities Across the Enterprise

<table>
<thead>
<tr>
<th>Competitive Advantage</th>
<th>Future Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near real-time requirements of the Business addressed</td>
<td>Iterative and cost effective approach to future Technologies</td>
</tr>
<tr>
<td>Forever extensible information infrastructure</td>
<td>Standards based approach (e.g. XML)</td>
</tr>
</tbody>
</table>

Cost Rationalization

- **Rationalization of Business Operations**
- **Implementation of Common Services and Functions**
- **Rationalization of Processes**

The cost reduction strategy is supported within the Technology Backplane Infrastructure by decommissioning and converging inefficient and redundant systems.

The Business Case for the Technology Backplane Infrastructure can be a cost neutral projection over a relatively short period.

The savings can be used to better address Operational/Convergence/Analytical implementations in a more cost effective manner.

Future Integration

- **Regulatory**
 - **Platform for rapid adaptation to regulatory requirements**
 - **Regulatory Reporting, Compliance and Analytics**

Concurrent with the implementation of the Technology Backplane Infrastructure itself there can be initiatives to improve the data quality, timeliness and accessibility. This directly enhances the ability to demonstrate conformance to regulatory requirements.

The Technology Backplane Infrastructure technical platform and functional capabilities assist these efforts by enabling the assessment of data quality and provide enhanced capabilities to implement business rules.

© 2008 BearingPoint, Inc.
Business Drivers for taking a Data-Driven Approach
Guiding Principles to a Successful Transformation

Principle #4. The Technology Backplane is Key – Get these Common Capabilities out in Front

The Transformation Strategy and Delivery Programmes are partitioned along 3 views
We get the Technology Backplane of Infrastructure and Information "in front" on new functional capabilities
XBR (Extreme Blueprinting and Roadmapping) involves a set of methods and activities used to formulate a Future State Blueprint and Roadmap. It is analogous to Extreme Programming, with a focus on iterative delivery, continuous communication and interactive work processes.

This approach provides a clear set of deliverables that aligns strategic to tactical and business to technology. We call this approach using the SAFE Architecture doing "IT Transformation the SAFE Way".

What is the Blueprint?
- A relatively high-level vision of an organisations' envisaged Future-State
- The XBR Blueprint is inclusive of Strategy, Organization, People, Process, and Technology and the Solution Definition
- Driven by the established Technology Principles and Business Priorities
- Much of the focus of this phase of work is on the Business Strategy and Technology Architecture
- Once completed, the Blueprint is thought of as a relatively static representation of the Current-State and Future-State with identified intermediate states

What is the Roadmap?
- The Roadmap is derived from the Blueprint
- It is a translation of the Blueprint into a dynamic representation of 'what it takes' to actually do the implementation
- It is a plan that can be directly implemented
- It is complemented in Phase 3 by Foundation Activities – those areas of Data Management and Infrastructure that are required first in the implementation stages of a project
The Transformation Strategy is conducted across 3 workstreams.

- There is a Business and Technology Blueprint across each area
- The Blueprint is comprehensive, covering strategy, people, process, organisation and technology

Each workstream has a defined area of scope

- The business model stream scope: Business functions, business processes, application capabilities, calculations
- The information stream scope: Information models, metadata management, data investigation, data quality, private information, common information
- The Infrastructure stream scope: Platforms, security, networks, operations & monitoring, integration

Each workstream also defines governance models, skill requirements a programme plan and
XBR – Extreme Blueprinting & Roadmapping
Strategic Component View of the Architecture, Backplane Focus

Application Development Business Model

- Enterprise and Domain Applications
- Composite Applications
- Business Intelligence

Technology Backplane – Information Development and Infrastructure Development

- Common Services
- Enterprise Business Management
- Enterprise Content Management
- Enabling Technologies
- Foundation Capabilities for Information
- Foundation Capabilities for Infrastructure
- Common or Shared Repositories

© 2008 BearingPoint, Inc.
XBR – Extreme Blueprinting & Roadmapping
The Strategic Vision Leads to Continuous Implementation

Business Blueprint (Phase 1)
Conducted Once

- Guiding Principles
 - Current State Business Architecture
 - Current State Technology Architecture
 - Applications Portfolio
 - End to End Process
 - Risk Management Framework
 - Prioritised Business Objectives
 - Business Case
 - Transition Priorities

- Future State
 - Business Architecture
 - Technology Architecture
 - Preliminary Implementation Plans (Sequencing, Risks, Financial)

Technology Blueprint (Phase 1)
Conducted Once

- Future State
 - Business Architecture
 - Technology Architecture
 - Preliminary Implementation Plans (Sequencing, Risks, Financial)

- Initial Implementation Options
 - Applications
 - Services
 - Course Corrections
 - Course Corrections
 - Phase One Implementations
 - Applications
 - Services
 - Integrated iODS
 - Iterative Application Deployment

Roadmap & Foundation Activities
Conducted Multiple Times

- Infrastructure Stream
- Information Stream
- Data Profiling
 - Integrated Data Standards
 - Attribute
 - Messages
 - WSDL
 - UDDI

- Software Environments
- Hardware Platforms
- MetaData Environment
The MIKE2.0 Methodology
An Open Source Methodology for Information Development

What is MIKE2.0?
- MIKE stands for Method for an Integrated Knowledge Environment
- MIKE2.0 is our comprehensive methodology for Enterprise Information Management
- MIKE2.0 brings together important concepts around Open Source and Web 2.0
- The open source version of MIKE2.0 is available at: http://www.openmethodology.org

Key Constructs within MIKE2.0
- Information Development is the key conceptual construct for MIKE2.0 – develop your information just like applications
- SAFE (Strategic Architecture for the Federated Enterprise) is the architecture framework of MIKE2.0 that can be used for IT Transformation
- MIKE2.0 Solutions provide a holistic way to solve common business problems – there is a MIKE2.0 Solution for IT Transformation

MIKE2.0 provides a Comprehensive, Modern Approach
- Scope covers Enterprise Information Management, but goes into detail in areas to be used for more tactical projects
- Architecturally-driven approach that starts at the strategic conceptual level, goes to solution architecture
- A comprehensive approach to Data Governance, Architecture and strategic Information Management

MIKE2.0 provides a Collaborative, Open Source Methodology for Information Development
- Balances adding new content with release stability through a method that is easier to navigate and understand
- Allows non-BearingPoint users to contribute
- Links into BearingPoint’s existing project assets on our internal knowledge management systems
- Unique approach, we would like to make this "the standard" in the new area of Information Development
MIKE2.0 Methodology
The 5 Phases of MIKE2.0

Information Development through the 5 Phases of MIKE2.0

Strategic Programme Blueprint is done once

Phase 1
Business Assessment

Phase 2
Technology Assessment

Continuous Implementation Phases

Increment 1
Increment 2
Increment 3

Phase 3, 4, 5

Improved Governance and Operating Model

Design
Development
Deploy
Operate
Roadmap & Foundation Activities

Begin Next Increment
MIKE2.0 Methodology
Activities and Typical Timeframes for the Initial Strategy

Phase 1 – Business Assessment and Strategy Definition Blueprint
1.1 Strategic Mobilisation
1.2 Enterprise Information Management Awareness
1.3 Overall Business Strategy for Information Development
1.4 Organisational QuickScan for Information Development
1.5 Future State Vision for Information Management
1.6 Data Governance Sponsorship and Scope
1.7 Initial Data Governance Organisation
1.8 Business Blueprint Completion
1.9 Programme Review

Phase 2 – Technology Assessment and Selection Blueprint
2.1 Strategic Requirements for BI Application Development
2.2 Strategic Requirements for Technology Backplane Development
2.3 Strategic Non-Functional Requirements
2.4 Current-State Logical Architecture
2.5 Future-State Logical Architecture and Gap Analysis
2.6 Future-State Physical Architecture and Vendor Selection
2.7 Data Governance Policies
2.8 Data Standards
2.9 Software Development Lifecycle Preparation
2.10 Metadata Driven Architecture
2.11 Technology Blueprint Completion

Representative Timeframe

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

© 2008 BearingPoint, Inc.
MIKE2.0 Task Overview: IM QuickScan
Task 1.4.2 Assess Data Governance (Information Maturity)

Information Development through the 5 Phases of MIKE2.0

Continuous Implementation Phases

Phase 1 Business Assessment
Phase 2 Technology Assessment

Increment 1
Increment 2
Increment 3

Activity 1.4 Organisational QuickScan for Information Development

1.4.1 Assess Current-State Application Portfolio
1.4.2 Assess Information Maturity
1.4.3 Assess Economic Value of Information
1.4.4 Assess Infrastructure Maturity
1.4.5 Assess Key Current-State Information Processes
1.4.6 Define Current-State Conceptual Architecture
1.4.7 Assess Current-State People Skills
1.4.8 Assess Current-State Organisational Structure
1.4.9 Assemble Findings on People, Organization and its Capabilities

Phase 1 – Business Assessment and Strategy Definition Blueprint

1.1 Strategic Mobilisation
1.2 Enterprise Information Management Awareness
1.3 Overall Business Strategy for Information Development
1.4 Organisational QuickScan for Information Development
1.5 Future State Vision for Information Management
1.6 Data Governance Sponsorship and Scope
1.7 Initial Data Governance Organisation
1.8 Business Blueprint Completion
1.9 Programme Review
Assess Initial Data Governance Levels

Show below is the sample output from Information Maturity (IM) QuickScan. IM QuickScan is used as the first step in assessing Data Governance levels across an organisation at an Enterprise level.
Help sell the Transformation programme by showing a corresponding increase in information value

IM QuickScan results can be used to provide a calculation on the Economic Value of Information in an Organisation.

The high-level steps are as follows:

- The value of the organisation is determined based on market value: $V_{\text{Org}} = \text{Share Price} \times \text{Number of Shares}$
- BearingPoint has conducted market research to determine an Information Coefficient, IC, that is typical of Financial Services Institutions: $V_{\text{I (theoretical)}} = V_{\text{Org}} \times \text{IC}$
- IM QuickScan is applied to understand current-state and planned Information Efficiency, IE:
 - $\text{IE}_{\text{current}} = \frac{\text{IMQS \ current}}{\text{IMQS \ Benchmark}}$
 - $\text{IE}_{\text{future}} = \frac{\text{IMQS \ future}}{\text{IMQS \ Benchmark}}$
- Once an information efficiency ratings have been determined for the current-state and target-state, the potential value gains can then be quantified.
 - $V_{\text{I (estimated)}}_{\text{current}} = V_{\text{I (theoretical)}} \times \text{IE}_{\text{current}}$
 - $V_{\text{I (estimated)}}_{\text{future}} = V_{\text{I (theoretical)}} \times \text{IE}_{\text{future}}$
 - $V_{\text{I (estimated)}}_{\text{Gains}} = V_{\text{I (estimated)}}_{\text{future}} - V_{\text{I (estimated)}}_{\text{current}}$

Quantitative estimates can then taken against this largely qualitative model.
MIKE2.0 Task Overview: IM QuickScan
Task 1.5.10 HL Recommendations for Solution Architecture

Information Development through the 5 Phases of MIKE2.0

Continuous Implementation Phases
- Increment 1
- Increment 2
- Increment 3

Activity 1.4 Organisational QuickScan for Information Development

Task 1.5.1 Introduce Leading Business Practices for Information Management
Task 1.5.2 Define Future-State Business Alternatives
Task 1.5.3 Define Information Management Guiding Principles
Task 1.5.4 Define Technology Architecture Guiding Principles
Task 1.5.5 Define IT Guiding Principles (Technology Backplane Delivery Principles)
Task 1.5.6 Define Future-State Information Process Model
Task 1.5.7 Define Future-State Conceptual Data Model
Task 1.5.8 Define Future-State Conceptual Architecture
Task 1.5.9 Define Source-to-Target Matrix
Task 1.5.10 Define High-Level Recommendations for Solution Architecture
Task 1.5.11 Introduce Leading Business Practices for Information Management

Phase 1 – Business Assessment and Strategy Definition Blueprint

1.1 Strategic Mobilisation
1.2 Enterprise Information Management Awareness
1.3 Overall Business Strategy for Information Development
1.4 Organisational QuickScan for Information Development
1.5 Future State Vision for Information Management
1.6 Data Governance Sponsorship and Scope
1.7 Initial Data Governance Organisation
1.8 Business Blueprint Completion
1.9 Programme Review
Show below are example outputs of high-level Solution Architecture option. Typically, there will be a few architecture models with supporting text.

This proposed solution includes 3 viable options:

- Use a Vendor model as the base logical data model for the EDW, going through a map-and-gap exercise to complete the model. This model is closely aligned to the existing data classification/taxonomy model that has been adopted organisation-wide.

- Develop & build a hybrid Data model consisting of existing data models used across the organisation from existing systems. These base models will need to be supplemented and integrated with other models currently used in enterprise applications.

- Develop and build a logical, normalised data model in-house for the, based on the existing data classification/taxonomy model that has been adopted organisation-wide and a well-defined set of user requirements.
Part of an overall architectural approach

1. Revise overall architecture models if required Initial assessments of current-state and vision
2. Definition of Guiding Principles
3. Create Strategic Conceptual Architecture
4. Define High Level Solution Architecture Options
5. Gathering of Strategic Requirements for Integration and Information
6. Definition of the Logical Architecture to understand what capabilities are needed from products
7. Map Logical Architecture to Physical Architecture to pick vendors

Strategic Business and Technology Architecture activities are done once, more detailed activities are done for each delivery increment
Assess your Strategic Technology Capabilities and Priorities

Show below is the sample output from Technology QuickScan. Technology QuickScan is a simple model that can be used as a starting point for defining strategic capabilities across the Technology Backplane. These strategic capabilities can then be used to feed into a vendor selection process in Activity 2.6.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Categories</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>Does the tool handle concurrent</td>
<td>Does the tool function in a c/s fashion using a shared repository?</td>
</tr>
<tr>
<td>Access</td>
<td>usage on overlapping data</td>
<td></td>
</tr>
<tr>
<td>Access</td>
<td>sets?</td>
<td></td>
</tr>
<tr>
<td>Access</td>
<td>Does the tool allow repository</td>
<td>Can the outputs of data profiling be used directly in the</td>
</tr>
<tr>
<td></td>
<td>access by 3rd party product?</td>
<td></td>
</tr>
<tr>
<td>Convergence</td>
<td>Can the outputs of data profiling</td>
<td></td>
</tr>
<tr>
<td>Convergence</td>
<td>be used directly in the</td>
<td></td>
</tr>
<tr>
<td>Convergence</td>
<td>What is the level of integration</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td>What is the level of integration</td>
<td></td>
</tr>
<tr>
<td>Convergence</td>
<td>to a data re-engineering</td>
<td></td>
</tr>
<tr>
<td>Convergence</td>
<td>Can jobs be componentised to be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>used by inter systems?</td>
<td></td>
</tr>
<tr>
<td>Convergence</td>
<td>Is the tool integrated with other</td>
<td></td>
</tr>
<tr>
<td></td>
<td>integration products BRE)?</td>
<td></td>
</tr>
<tr>
<td>Standards</td>
<td>Does the tool support using open</td>
<td>Does the tool support using open standards (e.g. XM 12EE)?</td>
</tr>
<tr>
<td></td>
<td>standards (e.g. XM 12EE)?</td>
<td></td>
</tr>
<tr>
<td>Standards</td>
<td>Does the tool support web services</td>
<td>Does the tool support web services interfaces?</td>
</tr>
<tr>
<td></td>
<td>interfaces?</td>
<td></td>
</tr>
<tr>
<td>Scalability</td>
<td>Does the tool offer support for</td>
<td>Does the tool offer support for parallel processing?</td>
</tr>
<tr>
<td></td>
<td>parallel processing by running a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>job across multiple CPUs on a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>server?</td>
<td></td>
</tr>
<tr>
<td>Scalability</td>
<td>Does the tool support parallel</td>
<td>Does the tool support parallel processing by running a job across</td>
</tr>
<tr>
<td></td>
<td>processing by running a job</td>
<td>multiple CPUs on a server?</td>
</tr>
<tr>
<td></td>
<td>across multiple nodes in a cluster</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or grid?</td>
<td></td>
</tr>
<tr>
<td>Scalability</td>
<td>Can the tool support projected</td>
<td>Can the tool support projected 3-year business volumes?</td>
</tr>
<tr>
<td></td>
<td>3-year business volumes?</td>
<td></td>
</tr>
</tbody>
</table>
MIKE2.0 Task Overview: Task Overview
Task 2.11.3 Define Capability Deployment Timeline

Information Development through the 5 Phases of MIKE2.0

Continuous Implementation Phases

Phase 1: Business Assessment
Phase 2: Technology Assessment
Phase 3, 4, 5: Continuous Implementation Phases
Phase 6: Start Next Increment

Activity 2.2 Strategic Requirements for Technology Backplane Development

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 2.11.1 Revise Blueprint Architecture Models</td>
<td></td>
</tr>
<tr>
<td>Task 2.11.2 Define Major Technology Risks and Constraints</td>
<td></td>
</tr>
<tr>
<td>Task 2.11.3 Define Business and Technology Capability Deployment Timeline</td>
<td></td>
</tr>
<tr>
<td>Task 2.11.4 Revise Business Case</td>
<td></td>
</tr>
<tr>
<td>Task 2.11.5 Define Roadmap Mission Statements</td>
<td></td>
</tr>
<tr>
<td>Task 2.11.6 Assemble Key Messages to Complete Technology Blueprint</td>
<td></td>
</tr>
</tbody>
</table>

Phase 2 – Technology Assessment and Selection Blueprint

- 2.1 Strategic Requirements for BI Application Development
- 2.2 Strategic Requirements for Technology Backplane Development
- 2.3 Strategic Non-Functional Requirements
- 2.4 Current-State Logical Architecture
- 2.5 Future-State Logical Architecture and Gap Analysis
- 2.6 Future-State Physical Architecture and Vendor Selection
- 2.7 Data Governance Policies
- 2.8 Data Standards
- 2.9 Software Development Lifecycle Preparation
- 2.10 Metadata Driven Architecture
- 2.11 Technology Blueprint Completion

© 2008 BearingPoint, Inc.
MIKE2.0 Task Overview: Task Overview
Task 2.11.3 Define Capability Deployment Timeline

Six Months – 1
- Enterprise Wide Stakeholders
 Community definition with roles and responsibilities
- First Enterprise Wide Enterprise Warehousing Workshop
- Functional Capabilities of a comprehensive ODS, Warehouse and Data Mart environment
- Enterprise Priorities mapped to the Functional Capabilities
- Initial Integrated Program of Works
- Initial Integration Methodology and implementation process
- Initial Integrated Data Model
- Initial Integrated Metadata Model
- Enterprise Wide Standards for attribute models, message models
- Functional requirements for the warehousing Info-Structure
- Initial Data Schemas allocated in a physical environment
- Initial Source systems identified for initial attributes
- Business Rules for all data cleansing identified
- Continuing Analysis Tasks identified
- Initial Warehouse operational for testing and validation

Six Months – 2
- Completed Analysis on the availability of sources for cost information (e.g., atomic data and Cross-Over Tables)
- Completed Analysis for Customer and Product Profitability Analysis
- Completed Analysis on all Cross Sectional generating events
- Completed ‘Whole of Customer’ matching strategy across Households and Products
- Production use of the initial data warehouse implementation
- Full Scale Sourcing for multiple retail products
- Initial Sourcing for customers and products
- Second phase of Household matching and first phase of product matching
- MetaData repository available in production environment
- An ongoing leader of enterprise information established
- Second enterprise wide workshop on data warehousing is held
- First EIS dashboard based upon the Enterprise Data Warehouse deployed
- The second release of the decision support models for DSS

Six Months – 3
- Source Implementations of (e.g., atomic data and Cross-Over Tables) for cost information
- Initial implementations for Customer and Product Profitability Analysis
- Metadata management applications extended to a limited user ‘self service’ environment
- Messaging and Real-Time Info-Structure implemented for initial round of ODS, Warehouse and Mart access
- Customer and Product ODS implementation
- AR closed loop to the warehouse designed
- Finance and Service information designed for incorporation in the EDW
- Proprietary environment used as a Data Mart
- Ongoing Data Quality Monitoring in place
- EDW development and management organization established
- EDW contains base information for accounts, customers and products
MIKE2.0 Task Overview: Task Overview
Task 2.11.3 Define Capability Deployment Timeline

Whole of Customer Revenue View – The focus of this component is on bringing together the 'Whole of Customer' for Product 1 and Product 2 from the perspective of Revenue. Initial matching of customers will begin; however, this will not limit product operational systems from using the information from their own perspectives.

Whole of Product Revenue View – The focus of this component is to begin the "Whole of Product" view. The revenue information information comes from XXXXX (source: XXXX) and XXXX. Product revenue will be tracked by the current segmentation in these systems as well as the product structures in these systems.

Complex Customer/Product Formulation – The focus of this effort will be to formulate some of the more complex definitions of customer and product. These activities, initially, will perform the required customer and product business analysis to enhance the warehouse data models.

Cross-Sectional Formulations – The focus of these efforts will be to establish the initial understandings of how the warehouse information must be summarized. Examples are: week, month, quarter, year, identified customer or product event.

Dependent Data Mart Formulation – The Dependent Data Marts addressed the specific business support needs of particular Enterprise business constituencies. The Marts can contain historical as well as ODS information. They will be used for a number of activities such as reporting or query as well as analytical activities.

Decommissioning – This thread of activities will focus on the decommissioning of the current high maintenance ODS/MIS implementations. The XXXXXXX, XXXXX and XXXX and XXXXXXX Databases are key in the decommissioning process. Unneeded capabilities can be terminated while others are target for the new environment.

Common Info-Structure – This effort focuses on the hardware and network environment for the implementation and use of the Enterprise Data Warehouse Environment. ETL and EAI implementations will be key. The hardware options will address ODS, Warehouse and Mart Environments.

Six Months - 1

<table>
<thead>
<tr>
<th>Common Data Model</th>
<th>Prod 1 Customer Revenue Load</th>
<th>Initial Use of Prod 1 Info</th>
<th>Customer Revenue ODS and Mart Implementations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Six Months - 2

<table>
<thead>
<tr>
<th>Common Data Model</th>
<th>Product Taxonomy</th>
<th>Product Aggregates</th>
<th>Product Revenue ODS and Mart Implementations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Six Months - 3

<table>
<thead>
<tr>
<th>Common Data Model</th>
<th>Extended Customer Definitions</th>
<th>Taxonomy of Customer Profiles</th>
<th>New Product Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extended Product Definitions</td>
<td>Extended Product Definitions</td>
<td>Taxonomy of Customer Profiles</td>
</tr>
<tr>
<td></td>
<td>Daily</td>
<td>Monthly</td>
<td>EIS Decision Models</td>
</tr>
<tr>
<td></td>
<td>Weekly</td>
<td>Yearly</td>
<td>EIS Dashboards</td>
</tr>
<tr>
<td></td>
<td>Event Driven</td>
<td></td>
<td>DSS Information Support</td>
</tr>
<tr>
<td></td>
<td>Mart Constituency Inventory</td>
<td>Mart Constituency Requirements</td>
<td>Data Mart Models and Tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Initial Data Mart Implementation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current ODS/MIS Users Inventory</th>
<th>Functions to Migrate Inventory</th>
<th>Decommissioning and Discontinuing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Current ODS/MIS Function Inventory</th>
<th>Functions to Discontinue Inventory</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DB Hardware Implementation</th>
<th>Ongoing Data Quality Improvement</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ETL and Warehouse Tools Implemented</th>
<th>SOA/Info-Structure and Security Implementation</th>
</tr>
</thead>
</table>
Keys to a Successful IT Transformation Strategy
Meeting these 3 Challenges is the Key to Success

1. **Building an EDM Strategy that can accommodate**
 - Continuous development through increment-based delivery
 - Changing business requirements over a multi-year programme
 - Delivery of tactical projects in the context of long-term strategic initiatives
 - Progressive changes to technology with vendor releases

2. **Aligning the EDM strategy with other strategic initiatives**
 - Provide deliverables with consistent definitions of "blueprints", "roadmaps", and "frameworks"
 - Ensure consistent leveling – re-factor deliverables that are too high-level or too detailed
 - Make sure the strategy is in touch with organisational culture and their ability to change
 - Define a delivery approach that allows for parallel activities and avoids serial bottlenecks
 - Ensure delivery is focused on high-risk areas of Data Management
 - Improve Operational Efficiency through reuse of common work products

3. **Building an improved competency in Data Management across the organisation**
 - Deliver through a systematic process that you follow from a data management perspective – within IT, the overall business and across departments
 - Integrate Data Management performance metrics into all your activities
 - Build a framework to reuse content at a detailed technical level
 - Provide solutions that integrate at the conceptual, logical and physical level to be insulated from vendor changes
Keys to a Successful IT Transformation Strategy
Lessons Learned from Past Initiatives

1. Define a Strategy that can be Executed
 - Launch a large-scale top-down strategy with a bottom-up (narrow and detailed) engagement if necessary
 - Make bottom-up engagements quick win and quick ROI: Data quality and metadata management are typically the best opportunities
 - Always define the tactical within the strategic and plan for re-factoring and continuous improvement in the overall programme plan

2. Design a Strategy that is Flexible and Meaningful to the Business
 - Expect business requirements to change – provide an infrastructure to handle a dynamic business
 - Know your risk areas in each implementation increment – focus on foundation activities first
 - Be aware of technology lock-in and know the cost of "getting out" – use an open approach
 - Break through limiting factors in legacy technology – this is the opportunity to kill the sacred cows

3. Keep the Business Engaged
 - Get technology backplane capabilities "out in front", but also design the strategy to deliver meaningful business value from the onset or you will lose interest and key staff within a few months
 - Communicate continuously on the planned approach defined in the strategy – the overall Blueprint is the communications document for the life of the programme
 - Work closely with users on the value of their the data, not just on system functions – design an approach that truly treats data with the attention it deserves